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1. Introduction

In recent years, increasing costs and social con-
sequencies of structual failures in systems ranging
from regular consumer products to sophisticated
nuclear power reactors have resulted in increased
public awareness and, consequently, the demand
for assuring structural reliability. An inescapable
element in the reliability of structures is that apart
from the presence of initial manufacturing and/or
fabrication defects, flaws appear during the ser-
vice life of the structure as a result of the materi-
al's exposure to time-dependent degradation proc-
esses such as pitting corrosion, corrosion fatigue,
and stress-corrosion cracking(SCC), etc.

Corrosion is a material degradation process es-
sentially consisting of the reaction of a metal ex-
posed to a reactive environment that can, in gen-
eral, be divided into two main classes, general
and local.V Concerning on the latter, pitting corro-
sion is a form of localized corrosion that is exceed-
ingly destructive since a perforation resulting

from a single pit can cause complete failure. Fur-

thermore, pits can produce premature service fail-
ure since they usually provide sites for crack ini-
tiation.

Evans? had stated that a study of corrosion
probability might often possess greater practical
importance particularly for localized corrosion.
Further he emphasized that a knowledge of the
exact velocity is less important than the assess-
ment of the statistical risk of its starting. Passivity
breakdown is a typical phenomenon showing a
statistical and probabilistic nature, triggering the
initiation of pitting corrosion, which might be po-
tential sites leading to crevice corrosion or stress
corrosion cracking. A lot of data on localized cor-
rosion showing a wide scatter have been accumu-
lated in laboratories and fields, but could not be
analyzed quantitatively unless statistical and prot-
abilistic approaches are introduced.

The objectives of the statistical and probabilistic
approach for analyzing the scattered data of local-
ized corrosion are roughly divided into two cate-
gories. The first is simply to get the representative

values or degree of variation of the distribution
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of scattered data for evaluating the corrosion be-
haviour more quantitatively. The second is to
manifest a basic mechanism of localized corrosion
which exhibits intrinsically a randomness or prob-
abilistic properties.a"“

The present paper reviewed firstly some exam-
ples of statistical distributions observed for SCC,
crevice corrosion and pitting corrosion and
secondly the stochastic model describing the pit

birth, pit death, and pit growth processes.

2. Failure Time Distribution of
Localized Corrosion

Recent studies® have shown that the distribu-
tion of failure time*of SCC obeys a Weibull or
exponential distribution. The Weibull distribution
is one of the extreme value distributions, which

is expressed as

Fi=1—exp[ —~—2 ]

¢y
, where F(t) is the cumulative distribution of fail-
ure time, t, and ty, a and b are a location, shape
and scale parameters, respectively. If the shape
parameter is unity, then the Weibull distribution
reduced to the exponential distribution.

The distribution of pits on the surface had been
found to obey a Poisson distribution by Mears
and Brown.®’ The two dimensional distribution of

pits is given by
P(n)=M"exp(—M)/n ! 2)

, where P(n) is the probability for finding n pits
in unit area and M is a mean or expected value
of n. Complete random occurrence of pit formation
results in a Poisson distribution, but mutual inter-

action of pit formation causes a distortion in the

shape of the distribution as discussed by Mears
and Brown.?

When a mean rate of pit generation is A(s™),
the expected value for finding n after time t is

equal to At. Consequently, Eq. (2) becomes
P(n)=(At)"exp(—At)/n ! (3)

The probability to exceed the time, t;, for detec-
ting a first pit in unit area is then reduced to

the following equation :

P(t;>t)=P(n=0)=exp(—At) €))

Then a cumulative survival probability of the pit

formation with time is
P(t)=exp(—At) (5)

and the probability density function of Eq. (5) is
given by

dP(t)/dt= —AP(t) (6)

Thus, the exponential distribution is deduced sim-
ply from a Poisson stochastic process. This type
of the distribution has been often observed in lab-
oratory experiments as well as in the field expo-
sure as discussed before. The exponential distri-
bution deduced from a simple Poisson process
is commonly observed for the first failure time

of SCC, crevice formation, and pitting corros:on.
3. Parameters Controlling Pit Initiation

Several different mechanisms for the initiation
of pitting corrosion have been proposed.7'8) It is
agreed that corrosion pits propagate as a result
of the development and maintenance of a high
local acidity or high concentration of aggressive
anions. As far as the nucleation of pits is con-

cerned, authors have emphasized, among other
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phenomena, inhomogeneity in the metal, cracking
and slow healing of the passive film, development
of critical acidity levels in microscopic flaws, de-
fect transport in passive films, and aggressive ion
(chloride) adsorption or incorporation into locali-
zed areas of the passive film, including adsorption
of halide ions into a transitional complex or local

thinning of the oxide layer under chloride islands.
4. Markoff Process

A randomly selected system is put into opera-
tion at time t=0. We consider the time of its fail-
ure as experimental outcome. The space is the
positive t axis, We define a random variable X
such that X(t)=t. Thus, X is the time of failure
of the system. Denoting by F(x) the distribution
X, we conclude that F(t) is the probability that

the system will fail prior to time t and
1-F()=P{X>t} (M

is the probability that the system will not fail prior
to time t.

The pit generation process is a stochastic proc-
ess having Markoff property whose past has no
influnce on the future if its present is specified.g)

This means the following © If t, ;<t,, then

. TIU([]. [z)

x(t)

P{X(t,)<x, | X(0), t<t, o} =PX(t,)<x, | X(t, D} 8)
From this it follows that if t;<ty<--<t, then

P{X(t)<x I X(t, ), Xt = PIX(t,) <, | X))
)

The above definition holds for discrete-time proc-
ess if X(t,) is replaced by X,. From Eq. (9) it

follows that
Gy x, g, x) = Hx, 2, ) (L0)
The chain rule can be expressed as follows :
ey, ) =0 x e xy) (g e G (11)

Applying the chain rule Eq. (11) to Eq. (10), we

obtain

HCTRISE I Es (P (P E S IR (C NP I (2]
(12)

Conversely , if Eq. (12) is true for all n, the proc-
ess X, is Markoff, because, in this case,

£y, 0%

£, xn1, 0 x) = =flx,lx,) (13)

f(xlv""xn-l)

If the present is specified, then the past is inde-
pendent of the future in the following sense @ If

k<m<n, then

n

(a)

()

Fig. 1. A continuous-time Markoff chain.
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0 x |2 ) =1l 2 )0 x,) (14)

A continuous-time Markoff chain is a Markoff
process X(t) consisting of a family of staircase
functions(discrete states) with discontinuities at

the random points t,(Fig. 1a). The values
a4, =X, ") (15)

of X(t) at these points (Fig. 1b) form a discrete-
state Markoff sequence called the Markoff chain
imbedded in the process X(t). A Markoff chain
X(t) is specified in terms of the underlying point
process t, and the imbedded Markoff chain q,.
We denote by

pi=PX(®)=a} (16)
the state probabilities of X(t) and by

mity ty) =P{X(tp)=a; | X(t)=ajf an
its transition probabilities. These functions are
such that

JETTij(tp ts)=1 zi:Pi(tl)nij(tp t) =pilty) (18)

A Markoff process X(t) is homogeneous if its
transition probabilities depend upon the differ-

ence T=t,—t;
m(0=PiX(t+D=alX(t) =2} v20 (19)
From the above it follows with a=t;—t, that
it + @)= Zm (Ony(a) (20)

This is the Chapman-Kolmogoroff equation for
continuous-time Markoff chains and it can be writ-

ten in a vector form
Nz +a)=I{)I(a) t,a>0 2n

where II(z) is a matrix with elements nij(t).
Transition matrix Il(z) of a continuous-time chain

X(t) can be determined in terms of the matrix.

Bip s Big
H'(0+):A—=- teraeratsaeaten (22)

Bnl' T Bnn

whose elements Bij=n’,»j(0+) are the derivatives
with respect to time from the right of the elements
mi(t) of II(z). These derivatives will be called the
transition probability rates of X(t). Clearly, )J:B”:O

because Zm(r)=1 and since
)

(©=38Li—j] L (23)
K P70 ixj
we conclude with A;= —B;; that
J

In the above, we have assumed that m;(v) is differ-
entiable at t=0". This is so only if the probabil-
ity that there is one discontinuity point in the
interval(t, t+At) is of the order of At
1- XAt i=j
PX(t+AD=alX(t)=a}= o (25)
i i#]
Differentiating Eq. (21) with respect to a and

setting =0, we obtain
N'E)=TA, IO)=1 (26)

This is a system of linear differential equations
with constant coefficients and its initial condition
I1(0) is the identity matrix. Solving Eq. (26), we

obtain
[I(t)=exp™ QN

We have thus expressed II(z) in terms of the tran-
sition rate matrix A.

The state probabilities p;(t) satisfies a similar
system . Denoting by P(t) a vector with elements

pt), we conclude from Eq. (18) that

P(t+v)=P(t)II() (28)
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Differentiating Eq. (28) with respect to t and set-

ting t=0, we obtain

P'(t)=PMA (29)
This is a system of N equations of the form

P’i(t):—Kip,-(t)+‘J;Bjile(t) B;iz0 i#j (30)
Its formal solution is

P(t)=P(0)exp™ (31

We have, thus, expressed P(t) in terms of the A
and the initial state probabilities p;(0). If X(t) is

stationary, then p,(t)=p,=constant. Hence
Api= Zi:Bjiny ?Pi: 1 (32)

This is a system expressing the state probabilities
of a stationary process in terms of the transition
rates Bij-

We detail the stochastic models describing the
pit birth, pit death, and pit growth processes as
follows.

Pit birth stochastic process —A birth process is
a Markoff chain X(t) consisting of a family of in-
creasing staircase functions(Fig. 2). The process
X(t) takes values 1.2,3,>- and it increases by 1
at the discontinuity points t;(birth times). From

the definition it follows that the transition rates

0 i t

Bjj are different from zero only if i=j or i=G—1).
Thus,

—Bi=A; and By 4+1)=A; ¢ if otherwise, B;==0
Hence, the process is specified in terms of the

parameter A,

P{X(t+ A=nlX({t)=n}=1-1,At n21

(33)
P{¥(t+At)=nlX(t)=n—1}=2,,At n>1
Hence
p1t+AD=p (D1~ 1AL n=1

Pt AD=p (A=A A +p, (O, 1At n>1
This yields

D=~ () n=1

(34)
Pa®O= =R p O+ A 19010 n>1

Note that the difference X(t,)—X(t;) equals the
number of discontinuity points t; in the interval(t,
t;). This shows that a birth process is completely
specified in terms of the point process t;. Assum-
ing that the rate of increase of X(t) is independ-
ent of its present state, A,=A=constant. Setting
A=A in Eq. (34), we obtain

2110 +Ap =0 p®=1 n=1

(35)
PO FAp =2 () P (0)=0 n>1

This yields

Fig. 2. Birth process.
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exp” ML)
n!

o1 = (36)
The above is the probability that X(t)=n+1 and
it equals the probability that the number of points
X(t)—X(0) in the interval(0, t) equals n.

Pitting process is a series of events which are
randomly distributed in time.and space over the
metal surface. Every event follows the same rules.
Detailed analysis of the scatterd data of induction
time for pit generation on stainless steel>*'? and
high nickel alloyll'lz) have been reported. Any dis-
tribution observed in the experiment could not
fit the simple exponential distribution, but a dis-
torted one, some of them showing convex curves
and others concave ones. For example, it had been
found in the analysis of the pit formation process
of Type 304 stainless steel in 3.5wt% NaCl, that
the curves of log(survival probability) vs. time
show clear three slopes as shown in Fig. 3.3 This

feature of the curve was explained by assuming

— T T T T
A-] -
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Fig. 3. Survival probability plotted as a function
of induction time for pit generation of Type 304

steel{from Referenceg))

series and parallel combination of the simple birth
stochastic process.

Other features of the curves observed in the
experiment are shown schematically in Fig. 4, in
which the alternate models to provide the corre-
sponding feature are indicated on the curves. As
illustrated in Fig. 4, proposed models are deduced
by assuming a parallel or series combinations of
the elemental Poisson process which shows the
exponential distribution.

Illustrated models could be divided into two
main categories of A and B(Figs. 5 and 6). The
model A assumes only a birth operating and for
the model B, both of the birth and death stochastic
process are considered in pit formation process.
Both models further include sub models which
assume parallel or series combination of the ele-
mental Poisson process .

Pit birth and death stochastic process— Experi-
mental data on the survival probability curve for
pit generation reported by Baroux!'? had demon-
strated that a more general feature of the curve
is not straight, but exhibits a long tail towards

extended time just illustrated as Bl in Fig. 4. He

A A

5 \\ 1

. SR

£ \ \ \ T M

;é }\ \\ \ M R

_g \ \ \ A4

5 A \ - Y

: e S,

& \ \ ~ Bl
Al1A2B2 A3 A3+ Ad

Time(t)

Fig. 4. Schematic illustration of In P vs. time
curves expected for various stochastic models
(from ReferenceS)).
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A. Birth stochastic process
Al. Simple birth process

At
P=e
Attty
P=e ’
A2. Simultaneous processes In series
iy Aol 1) N ty)
Pi=e Py=¢ P=c
A g
Penp=e Y
A3. Simultaneous processes A4, Independent processes in
in parallel parallel at the constant ratio

11
Pi=c

- 1)

b M| |
=e
i

P=1-n{1-P) P YLp
ey

=1 nfl1-e Mt Wy - Sfe Mt tg)

Fig. 5. Series or parallel combination of the ele-

mental Poisson process leading to various models
(from References)).

observed similar long tail curves, but only discus-
sed an initial pit generation rate which changes
with time due to ageing. Williams ef al' proposed
a birth stochastic model with a death process to
simulate the electrochemical noise data before and
after macroscopic size pit formation. The curves
deduced from the model proposed by Williams
et al™ is catagorized as a series combined birth
and death stochastic model and called B2 as shown
in Fig. 4.

In our laboratory, pit embryo generation rate
A{t) was determined as a function of exposure time
in 0.1M Na,SO,+0.02M HCI solution at various
applied potentials for Al-lwt.% Si-0.5wt.% Cu al-
loy thin film. The result is demonstrated in Fig.

7.9 The generation rate A(t) initially decreased

B. Birth and death stochastic process
B1. Birth and death process

pit generation A u pit repassivation

(.

dP/dt= —iP+u(1—-P)
P=p/Git ) + a0+ w expl — (A+ ) (t—ty)}

B2. Birth process with death process

Al

K

dP/dt=— — AP, A=ah exp( —uty)

InP= —arlt—ty)exp (—pry)

Fig. 6. Schematic illustration of the birth and death

stochastic process(from ReferenceS)).

Pit embrvo generation rate, A(t) X 10%/sec’

0 2000 4000 6000

Exposure time/s

Fig. 7. Plots of pit embryo generation rate versus
exposure time for Al-1wt.% Si-0.5wt.% Cu alloy
thin film at applied potentials of : O, —350mV-
sce s [, —400mVsce 1 &, —450mVsce.
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rapidly and then remained nearly constant with
exposure time at a given applied potential. It is
noted that the generation rate A(t) is raised with
applied potential prior to a certain exposure time,
while it is lowered with applied potential after
the exposure time. The plots of A(t) against expo-
sure time suggest that the survival probability for
pit embryo generation is determined by the birth
and death process illustrated as Bl in Fig. 4.
The birth and death stochastic model is derived
as follows. Suppose now that a Markoff chain takes
the values 0,1,2, -
+1 or —1(Fig. 8). We then say that X(t) is a birth-

and its discontinuity equal

death process. In this case, A; is different from
zero only if i=j or (—1) or (j+1). Hence, X(t)
is specified in terms of the two parameters
A =Big+ 1 K= Bi-1 @7
Thus, —B;;=A;+u; and

P{X(t+At=nlX(t)=n—1}=x At
PX(t+ Aty=nlX()=n}=[1-(, t p)At] (38)
P{X(t+ A =nlX(O)=n+1}=p,, At

From the above, it follows that

2ot T Agpo(t) = uypq (1) n=0 (39)
PO+t (0=
Ay 1Ot U1 9P41(0) n>0
A
x(t)
< ¥ -
0 T t; t

Statistics of pit growth —Previous models on the
statistics of pit growth advanced by Fleischmann’s
group13'15~17) used the statistics of current time
transient resulting from random nucleation proc-
ess followed by a deterministic evolution of the
current to the resulting growth centers previously
developed in some detail for electrocrystallization.
1819 They assume that all pits evolve according
to a deterministic law i=cu, where i is the current
density, and c is a deterministic evolution coeffi-
cient, and # is the age of the pit. Unfortunately,
throughout that work no attempt has been made
to introduce a stochastic description of the pit
growth process.

According to the model by Mola et al,”™® the
stochastic approach to pit growth is described as
follows. Pit growth proceeds when at a certain
time t;>1(, a second element of volume AV, ad;a-
cent to the first one, is corroded. This process
is repeated so that at times t,, k=12, =, the
pit volume changes from AV to (¢+1) AV in
a similar way as that employed above for pit birth,
except that in the present case, the growth prob-
ability of one pit is directly proportional to ¥,
the pit surface area at that particular time i. 2.,
the rate of the process is determined by the pit
surface value Y,. It can be also noticed that the

same model might be applied to the pit growth

] Mn Mni1

—<, <

)‘O }\n 1 )\n

Fig. 8. Birth and death process.
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stages under diffusion control, provided that the
dependence of ¥, on the growth geometry is mod-
ified. We suppose that the pit volume at times
t becomes V(t)=Fk(t)AV. Likewise it is further
assumed that :

1. No pit volume decrease is possible.
Plk(t+ At <k(®) R =}=0 (40)

2. The probability for pit growth in a small time

interval At is proportional to At and the pit sur-

face area 7,.
Pik(t+ A — k()= LlE()=j=7,At (41)

3. Pit growth takes place as a stepwise process,

each step involving a simple element of volume.

Plk(t+ At)~ k()= 0lk(t)=ji=1—7,At (42)

4. At t=0 the pit volume is zero.

Plk(t)=0}=1 (43)
By calling
P,(t)=Ple(t)=jt (44)

According to the description on parameters con-

trolling pit initiation, it results
Py (t)= Pik(t)= 0} = P(ty>t) = exp(— Y,t) (45)

For the pit volume to reach jJAV remains unchan-
ged between t and t+ At, or that the pit volume
changes from(j— 1)AV to jAV in going from t to
t+ At. That is

Then
dPJ/dt: _‘YJPJ(t)‘FYJ‘lPJ»I(t) (47)

The solution of this equation is

P0=", [P (expl =Vt —t)lde j=12,+
(48)

On the basis of the pit growth process given by
Eqgs. (45) and (48) and the knowledge of the sur-
face pit value Y; a t; value can be randomly gen-
erated. The surface of every pit is then subdivided
into ¥; area elements, each one of them being ran-
domly chosen by assuming an equal a priori prob-
ability. The volume element of material is to be
subsequently corroded at the time t;. Therefore,
the greater the number of faces that an element
of volume has in common with the surface pit
area, the larger the probability of being corroded
in the following time interval.

The model described pit growth as a discrete
process involving a series of successive events,
each one of them implying a loss of material at
the corroding phase associated with a volume AV.
Thus, if V. denotes the largest pit volume at-
tained after a certain time in a corrosion experi-

ment, one can write

15—

10—

Volume(dV)

T Tl T2 h%) T5 T10 Ti5

Time(t)

Fig. 9. (——) Stochastic simulation of a typical
growth process for a single pit.(----) The deter-
ministic(t—ta)? law in dimensionless units of time
(At) and volume(8V){from Reference?®).
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Vinax = NmaxAV (49)

, where N .. can be referred to as the resolution
degree for the pit volume. A typical growth proc-
ess for a single pit is shown in Fig. 9 where the
solid line represents the stepwise process as pre-
dicted from the model and the dashed line the
approximate deterministic law.

According to the electrochemical reaction relat-
ed to thee corrosion process, there is a direct
relationship between 8m, the amount of material
loss and 8Q the corresponding electrical charge.
Therefore, the current intensity, i,, related to pit

growth should be directly proportional to the num-

(a) i“ﬁ
10—

> K
T JﬁJJ
e

Time(t)

Volume (dV)

To

(b)

Aty

>

<
TR

Fig. 10. (a) A typical stochastic experiment de-

Number of events(ANk)
[a*] -
|

scribing the initial stages of pit growth. Pit birth
times(to) are indicated in dimensionless units of
time(At) and volume(8V). Crosses indicate pit
deaths. (b) Number of events{AN) per unit time
(At} corresponding to the stochastic experiment
shown in Fig. 9a. Pit current ik can be obtained
from i.=(ANW/(At)(from Reference®”).

ber of events per unit time(rate). Let AN, be the
number of events occuring during the interval At,,
then

i = AN, /AL, (50)

, where i, and At, are given in dimensionless
units. A typical experiment for the initial stages
of pit growth is depicted in Fig. 10. In this case
the values of to(i=1, 2, --*), the birth time of the
i-th pit, are indicated, and the pit current is obtain-
ed from Eq. (50), on the assumption that the con-

tribution of N, results from different growing pits.
5. Discussion

The susceptibility of various metals to localized
corrosion has been tested in several media to vali-
date the stochastic analysis approach.3‘4’10~ 2
However, very few thorough comparisons are
available because so far there have not been a
sufficient number of investigations of this type,
and various experimental conditions are not tot:l-
ly equivalent. More attention should be paid to
the procedure used for creating the pitting concli-
tions: Introduction of the halides ions before or
after the potential shift toward high anodic polari-
zation is of great significance in influencing the
history of the protective layer.

The interpretation of the survival probability
curve in terms of birth and death processes seems
problematic if only the stable pits are taken in:o
account. The general equation as a birth and death
stochastic process presented in the present review
paper is given in Eq. (39), which gives for n=0
(as it is supposed that P(t, — 1)=0). For relatively
low pitting activity, it can be supposed that at most
one pit can exist on the surface, have P(t, 1)=1—P
(t, 0). Thus, Eq. (39) becomes
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Py App®) = 1, [1— po(0)] {51)

The above yields the equation used by Shibata

et al,® which is given by

P=p/(h+ W+ Lw/O+ wlexpl — (A +w(t—ty)]
) (52)

, where t; is incubation time, before which no
pit generation probability is expected. However,
this simplified model leads to a survival probabil-
ity that tends toward a limit p/(O.+p). Instead,
the full sequence of the general Eq. (39) predicts
a survival probability that tends toward zero for
long times. That is, after an elapse of long period,
the stationary state is attained. In this case, p’,(t)
=0 with a,=A and B,=u and Eq. (39) yields

}‘170: upl’ (}‘+“)pn:}‘pn-] +“pn.1 (53

From this it follows readily that

\

A A\n
Po=1——, py=p|—
H u

/

o
[T
When the value of n is large at a given t, b, ap-

A
=(1--) u>A (54)
u

proaches zero. This conclusion is more realistic.
The death rate can not be obtained by only taking
into account the counting of the stable pits without
analyzing the prepitting stage. The investigation
of this stage is particularly attractive because its
investigation could lead to a nondestructive tech-
nique for evaluting the resistance of metals to

localized attack in a given medium.
6. Conclusions

From this review, it can be concluded that the

stochastic approach is very powerful in investiga-

ting the localized corrosion, even if not the only
one, since pitting is largely dominated by random
parameters. The use of the stochastic approach
has led to the possibility of testing microscopic
models much more rigorously than has been pos-

sible hitherto.
References

1. F. A. Champion, . Inst. Metals, vol. 69. p. 44,
London, 1943.

2. U. R. Evans, “Localized Corrosion”, ed. B. F.
Brown, J. Kruger and R. W. Steahle, p. 144,
NACE, Houston, 1974.

3. T. Shibata and T. Takeyama, Nature, 260, 315
(1976).

4. T. Shibata and T. Takeyama, Corrosion, 33,
243 (1977).

5. T. Shibata, “Localized Corrosion”, ed. F. Hine,
K. Komai, and K. Yamakawa, p. 197, Elesevier
Applied Science, London 1988.

6. R. B. Mears and R. H. Brown, Ind. Eng. Chem.,
29, 1087 (1937).

7. U. Bertocci and Y-X. Ye, J. Electrochem. Soc.,
131, 1011 (1984).

8. U. Bertocci, M. Koike, S. Leigh, F. Qiu, and
G. Yang, J. Electrochem. Soc., 133, 1782 (1986).

9. A. Papoulis, “Probability, Random Variables
and Stochastic Process”, p. 385, Polytechnic
Institute, New York, 1984.

10. B. Baroux, Corros. Sci., 28, 969 (1988).

11. T. Shibata and Takeyama, J. Jpn Inst. Metals,
42, 743 (1978).

12. T. Shibata and Takeyama, J. Jpn Inst. Metals,
43, 270 (1978).

13. D. E. Williams, C. Westcott, and M. Fleisch-
mann, J. Electrochem. Soc, 132, 1804 (1985).

14. S. I. Pyun, E. J. Lee, and G. S. Han, accepted



160 FawAaala A2z M2Ex 1993. 6

for publication in Thin Solid Films (1993).
15. M. Fleischmann, M. Labram, C. Gabrielli, and
A. Satter, Surf Sci, 101, 583 (1980).
16. E. Budevski, M. Fleischmann, C. Gabrielli, and
M. Labram, Electrochim. Acta, 28, 925 (1983).
17. D. E. Williams, C. Westcott, and M. Fleisch-
mann, J. Electrochem. Soc, 132, 1976 (1985).
18. G. Hills, 1. Montenegro and B. Scharifker, J.

Appl. Electrochem, 10, 807 (1980).

19. B. Scharifker and G. Hills, Electrochim Acta,
28, 879 (1983).

20. E. E. Mola, B. Mellein, E. M. Rodriguez de
Schiapparelli, J. L. Vicente, R. C. Salvarezza,

and A. ]. Arvia, J. Electrochem. Soc., 137, 1384
(1990).



