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Potentiodynamic polarization, EIS measurements, quantum chemical calculations, and molecular dynamic

simulations were used to investigate the corrosion behavior of mild steel in 0.5 M aqueous hydrochloric

acid medium in the presence or absence of nystatin drug. Potentiodynamic tests suggested that this mol-

ecule could act as a mixed inhibitor due to its adsorption on the mild steel surface. The objective of this

study was to exploit theoretical calculations to gain a better understanding mechanism of inhibition. Cal-

culating the adsorption behavior of the investigated molecule on Fe (1 1 0) surface was accomplished using

Monte Carlo simulation. Molecules were also investigated using Density Functional Theory (DFT), spe-

cifically PBE functional, in order to identify the link between molecular structure and corrosion inhibition

behavior of the compound under investigation. Adsorption energies between nystatin and iron were esti-

mated more accurately by utilizing Molecular Mechanics calculation with Periodic Boundary Conditions

(PBC). Estimated theoretical parameters significantly assisted our understanding of the corrosion inhibi-

tion mechanism exhibited by this molecule. They were found to be in accord with experimental results.
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1. Introduction

A combination of the physical and chemical

characteristics of mild steel, as well as its low availability

and cost, have made it one of the most widely used

materials in a wide range of industrial areas [1–6]. This

material is utilized in a variety of applications, including

mineral processing equipment, petroleum refining, and

other construction applications. Despite the fact that the

material has a wide range of applications, it has poor

corrosion resistance when exposed to aqueous solutions

of hydrochloric acid. As a result of this exposure, many

metal structures deteriorate, resulting in significant

economic repercussions. As a result, corrosion protection

has become an inevitability. Several techniques have been

tried to safeguard metals, but one of the most successful

and cost-effective is the addition of inhibitors to an acid

media. According to the literature, organic compounds

that include unsaturated bonds, aromatic rings as well as

heteroatoms such as O, N, and S, are the most effective

corrosion inhibitors [7–10]. Using mild steel in 0.5 M

HCl, we investigated the inhibitory impact of nystatin

drug on the corrosion of this material. Nystatin is a

possible corrosion inhibitor due to its chemical structure,

which contains heteroatoms (O, N) and numerous double

bonds. Theoretical calculations (DFT, MC and MD) were

used to complete the study. 

2. Materials and Methods

2.1 Instrument, material, electrode preparation and the

corrosive solution 

At 298 K, a PalmSens3 potentiostat was utilized in

conjunction with a three-electrode cell. As an auxiliary

electrode, a graphite rod (d = 3 cm, l = 4 cm) was used,

and the saturated calomel electrode (SCE) was used as a

reference electrode. Potentiodynamic polarization curves

were produced by scanning the electrode potential vs.

E
OCP 

at a 1 mV/s sweep rate. The measurements were

performed in an atmospheric environment. Each

experiment was accomplished three times to ensure

repeatability. The EIS measurements were performed at

the frequency range from 5 Hz to 10000 Hz at the Open

Circuit Potential (OCP) and using an amplitude perturbation†Corresponding author: valbona.mehmeti@uni-pr.edu
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of 10 mV.

Table 1 shows the mass percentages of mild steel (in

weight percent) [11]. The corrosive solution utilized was

a 0.5 M HCl acid solution that was prepared by diluting

the solution with bi-distilled water.

The electrode for the electrochemical experiments was

made by embedding a mild steel rod (d = 1.5 mm, l =

15 mm) within a Teflon® tube (d = 0.5 cm, l = 5 cm) with

epoxy glue and then allowing the electrode to dry. The

electrode was polished on silicon carbide abrasive paper

(medium grain diameter 6.5–15.3 microns), then on a

(DP-Nap) cloth soaked in aluminum oxide (0.3 micron

particle size) solution, and then washed and sonicated in

water.

2.2 DFT calculations

DFT calculations were fulfilled by the Dmol3 software from

Biovia [12,13]. Meta Generalized Gradient Approximation

[14,15] employing the M11-L [15-17] and the Double

Numeric quality basis set (DNP) [18] were used for

geometry optimizations (using the Grimme’s DFT-D

correction). A lower than 0.00001 kcal/mol convergence

standard for the self-consistent-field (SCF) was used for

the SCF. The energy minima were validated by carrying

out a vibrational analysis and establishing that there were

no imaginary frequencies present in the data [19-21]. 

2.3 Monte Carlo (MC) and Molecular Dynamic (MD)

simulation 

The simulation of the interaction of a mild steel surface

with the Nystatin drug is performed in the corrosion

environment by utilizing a six atom-thick layer unit cell

of Fe(1 1 0) surface as the basis for the experiment (under

Periodic Boundary Condition). The surface of Fe(110) is

densely packed; it has a lower surface energy but a higher

surface atom coordination number. As a result, this surface

was chosen to address the adsorption of Nystatin largely

because it has a greater number of interaction sites with

corrosion inhibitor. The sizes of the slab model were:

32.271 Å × 32.271 Å × 10.235 Å with and enclosed

addition of a 30 Å vacuum layer at the C axis that was

introduced with: 1 Nystatin molecule / 1000 H
2
O

molecules / 10 chloride + 10 hydronium ions. In advance

of the MD step, the geometry of the simulation boxes was

optimized (energy converges tolerance of: 1 × 10-5 kcal/

mol) using the Forcite module in the Biovia software

package.

MD was performed at a temperature of 25 oC [22] using

the Constant volume/constant temperature (NVT) canonical

ensemble with a simulation period of 1000 ps [23-27].

The Berendsen thermostat conserves the temperature.

Calculations for MC and MD are carried out using the

Condensed Phase Optimized Molecular Potential II

(COMPASSII) forcefield. [26,28-37]. Radial Distribution

Function (RDF) analysis included the entire MD

trajectory [2,20,23,29].

3. Results and Discussion

3.1 Polarization measurements

The anodic and cathodic polarization curves of a mild

steel electrode in 0.5 M HCl solution are shown in Fig.

1 in the absence and presence of the drug Nystatin at 298

K. The IE (in percent) was determined using equation (1):

Table 1. Composition of mild steel (wt%)

Fe C P Mn Si Cr S Mo Ni

99.54 0.1252 0.0316 0.1836 0.0561 0.0124 0.0282 0.0125 0.0015

Fig. 1. The Tafel plot of the mild steel electrode measured in
HCl solution (c = 0.5 M): in the absence and in the presence
of: 100, 200 and 500 ppm of Nystatin
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(1)

The electrochemical parameters: corrosion potential

(E
corr
) and corrosion current density (i

corr
), were determined

from the intersection of anodic and cathodic Tafel slopes

and are presented in Table 2.

The Tafel plot in Fig. 1 demonstrates that adsorption of

Nystatin molecules onto the mild steel surface substantially

lowers the corrosion current of the mild steel in this hostile

environment, reflecting a high corrosion inhibition

effectiveness of up to 93.49 percent.

When Nystatin is added to the solution, the values of

the cathodic and anodic Tafel slopes (bc, ba) (Table 1)

alter. The variations in the Tafel slopes indicate that both

molecules have an effect on the kinetics of the hydrogen

evolution process [10]. This results in a greater energy

barrier for proton discharge and therefore less gas

evolution. The investigated compound had no discernible

effect on the corrosion potential, suggesting that it acts as

a mixed-type inhibitor [6].

3.2 EIS measurements

The different electrochemical parameters derived from

these spectra using the electrical circuit of Fig. 2 are given

in Table 3.

As illustrated in Fig. 3, impedance diagram is defined

by a single capacitive loop centered on the real axis, the

diameter of which grows as the inhibitor concentration

increases, suggesting an increase in protective power. This

IE %( )
iabsence of inhibitor
corr.

ipresence of inhibitor
corr.

–

iabsence of inhibitor
corr.

--------------------------------------------------------------------------------------= 100

Table 2. Electrochemical parameters of mild steel at various concentrations of Nystatin molecule in 0.5 M HCl

C

[ppm]

Ecorr.

[V]

Icorr.

[μA/cm2]

bc

[mV/dec]

Bc

[mV/dec]

IE

[%]

- -0.419 803.7 -143.1 89.4 -

100 -0.463 149.2 -108.3 74.5 81.43

250 -0.451 99.4 -110.1 56.4 87.63

500 -0.442 52.3 -116.8 54.1 93.49

Fig. 2. Equivalent circuit for fitting the experimental
impedance data

Fig. 3. Nyquist plots of the mild steel electrode measured in
HCl solution (c = 0.5 M): in the absence and in the presence
of: 100, 200 and 500 ppm of Nystatin

Table 3. EIS and the corresponding inhibition efficiencies for mild steel in 0.5 M HCl solution in the absence and presence of
various concentrations Nystatin at 298 K

Conc.

(ppm)

Rs

(Ω cm2)

Rct

(Ω cm2)
ndl

Cdl

(µF*cm-2 )

Q

(µF*Sn-1)
θ

ηimp

%

HCl 0.5 M -- 2.07 10.2 0.89 187.2 530.1 - -

Nystatin

500 1.58 251.1 0.75 55.4 134.3 0.959 95.9

250 1.67 169.4 0.79 74.7 178.9 0.939 93.9

100 2.04 66.3 0.81 89.2 206.4 0.846 84.6
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finding reveals that the load transfer process is the primary

determinant of the corrosion reaction of mild steel with

and without protection [38]. Additionally, the Nyquist

plots are not ideal half-loops, which may be a result of

the interfacial impedance frequency dispersion due to the

roughness and heterogeneity of the metal surface [31].

As shown in Table 3, as the concentration of Nystatin

increases, the charge transfer resistance increases and the

Q declines from 500 to 150 ppm, which can be attributed

to the reinforcement of the test film adsorbed on the steel

surface.

3.3 DFT, MC and MD results

Prior to calculation, the microspecies distribution of the

Nystatin molecule was calculated using Chemaxon

software to account for pH impact on protonation/

deprotonation. As seen in Fig. 4a. Forms A and B of the

chemical structures are both below pH 7 and these

structures were used in the theoretical calculations (Fig. 4b).

When it comes to molecular simulation and mechanism

verification, both HOMO and LUMO (Fig. 5) are often

used as guidelines to give information on whether a

reaction is proceeding correctly and which portions of the

molecules are accountable for the reaction [6,30,31].

While the HOMO shows electrons being donated to the

electron-accepting portions of the molecule, the LUMO

depicts electrons being donated to the net-donor sections

of the molecule.

On the other hand, the HOMO and LUMO OM and

MEP of the Nystatin drug are shown in Fig. 5, and the

most often seen DFT indices are listed in Table 4. Most

of the HOMO and LUMO densities are concentrated

around the sugar moiety in the part of the molecule

holding the double bonds. When it comes to the Nystatin,

the noteworthy importance of HOMO and LUMO is their

capacity to interact with the Fe(1 1 0) surface via electron

donation and acceptation, respectively [2,7,37-40,24-

27,29-32]. 

This trend is also evident when the electron affinity and

ionization potential of the material are calculated,

resulting in a similar capacity. Additionally, an acceptable

softness value and a somewhat low hardness ratio enhance

Fig. 4. a. the distribution percentage of Nystatin molecular forms vs. pH value of the media and b. two major species
distributed at pH<7 used in the theoretical calculations (DFT, MC and MD)
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Nystatin’s propensity for adsorption on metal surfaces

[9,11,41,42]. 

3.4 Monte Carlo and Molecular dynamic simulations

The lowest energy configurations of the Nystatin

molecule on the metal surface in the simulated corrosion

environment are shown in Fig. 6. The adsorption

geometries of the inhibitor indicate that the oxygen atoms

help in the adsorption process. This adsorption affinity

results in the development of a protective anti-corrosion

layer on the metal surface.

The quantitative determination of the inhibitor

molecule's interaction with the metal surface is

accomplished via the computation of the adsorption

energies using the following equation [43]:

where: Etotal is the total energy of the system as a result

of inhibitor-metal interaction; Esurface + water and ENystatin + water

is system energy in the absence and presence of Nystatin

inhibitor. 

Eads Etotal Esurface water+
ENystatin+[ ] Ewater+–=

 Fig. 5. HOMO, LUMO surfaces and ESP for Nystatin molecule

Table 4. Calculated theoretical chemical parameters for the
Nystatin inhibitor.

Theoretical parameters
Nystatin 

Form A

Nystatin 

Form B

HOMO -5.178 -5.085

LUMO -2.780 -2.685

∆E (HOMO-LUMO) 2.398 2.400

Ionization energy (I) 5.178 5.085

Electron affinity (A) 2.780 2.685

Electronegativity (Χ) 3.979 3.885

Global hardness (η) 1.199 1.200

Chemical potential (π) -3.979 -3.885

Global softness (σ) 0.834 0.833

Global electrophilicity (ω) 6.602 6.289

Electrodonating (ω-) power 8.742 8.381

Electroappcepting (ω+) power 4.763 4.496

Net electrophilicity (∆ω+-) 4.648 4.377

Fraction of transferred electrons (∆N) -0.312 -0.273

Energy from Inhb to Metals (∆N) 0.117 0.089

∆E back-donation -0.300 -0.300
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Random molecular configurations as big as feasible

(ions or molecules) are selected in the simulation box for

each MC. The graph in Fig. 7 shows that as more of these

systems are utilized, the average energy of the system

reaches a plateau, indicating that the system has achieved

its energy equilibrium (after 45000 steps).

The identical number of randomly generated MC

configurations (one million) was utilized for both Nystatin

forms, and the lowest energy configurations as indicated

by the stability of the Average Total Energy values were

obtained. The different energy terms are the results of the

functional form of the COMPASS II force field

(consisting of terms for: bonds, angles, dihedrals, out-of-

plane angles as well as cross-terms, and two non-bonded

functions, a Coulombic function for electrostatic interactions

and a Lennard-Jones potential for van der Waals interactions).

The deprotonation of the amino group appears to have a

little effect on the Nystatin molecule's interaction with the

mild steel surface.

Monte Carlo simulations agree well with the

experimental findings. The high negative value of the

adsorption energies (Fig. 8) attests to the adsorption

process’s spontaneity [11,24,25,34]. 

MD simulations retain the ability to track and record

the dynamics of the adsorption of the inhibitor on the

metal surface [31,44-47]. One method to verify that the

system achieved the lowest energy, it is to monitor the

potential temperature change throughout the MD run.

From the Fig. 9, the temperature drift is low – indicating

a successful run of the MD of our system.

Fig. 6. A. MC and B. MD obtained from the adsorption configurations of the Nystatin inhibitor in the simulated corrosion
media on the Fe surface

Fig. 7. The contribution of the different energy terms during the MC calculations (a. Form a and b. Form b)
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The latest inhibitor configurations on the metal surface

are shown in Fig. 6. The MC calculations indicate that

the O atoms are responsible for the Nystatin drug’s

adsorption. The adsorption energy derived from the MD

simulations (Fig. 10) demonstrates that since the inhibitor

regardless of it’s protonation form (A or B) interacts

strongly with the surface, it lays nearly flat on it, limiting

the ability of corrosion species to reach the surface – thus

reducing the mild steel's corrosion rate.

This deduction is sustained also by the analysis of the

Radial Distribution Function (RDF) calculated the oxygen

atoms from the horizontal of the metal surface presented

in the Fig. 11. 

It is widely accepted that when a peak appears in the

RDF graph of a particular atom(s) and the surface between

1 and 3.5 Å, it is a strong indication that chemisorption

occurred, whereas the presence of physisorption RDF

peaks is estimated at greater distances (typically > 3.5 Å)

[22,23,25,32-35,39].

The RDF for the oxygen atoms (Fig. 9) of the inhibitor

suggests the chemisorption of the inhibitor on the metal

surface [48,49]. The accomplished results from MD and

corresponding RDF analysis validate the firm tendency

of the inhibitors to adsorb and protect the metal, due to

its unusual attraction to bring and take electrons to the

metal surface [23,38,41].

Fig. 8. Distribution of the adsorption energies for Nystatin (a. Form a and b. Form b) onto the iron surface obtained by via MC

Fig. 9. Temperature fluctuation (T = 298 K) during the MD
run in the simulated corrosion media

Fig. 10. Evolution of the adsorption energy during the MD
run in the simulated corrosion media during the interaction
of Nystatin (Form A and B) with Fe (1 1 0) surface in the
simulated corrosion media (the corresponding mean values
of the interaction energies are presented in the graph)
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4. Conclusions 

The studied molecule is an excellent inhibitor for mild

steel in an acidic medium. The polarization measurements

show that this molecule acts as a mixed inhibitor. DFT

calculations were used to determine the inhibitors'

adsorption centers. Additionally, the MC and MD

calculations support the inhibitor's strong adsorption

interaction with the metal surface, providing molecular

evidence for the Nystatin molecule's adsorption behavior

(geometry) and adsorption energy on the iron surface.

Theoretical results (DFT, MC, and MD) corroborate the

experimental results.
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